American Microsemiconductor

Advancing the Semiconductor Industry Since 1972

Low-Power CMOS **Octal Analog Switch Array**

FEATURES

- ±15 Volt Input Range
- ON-Resistance < 85 Ω •
- Serial Data Input/Output
- Low-Power ($P_D < 105 \mu W$) ٠
- TTL and CMOS Compatible ٠
- Any Combination of 8 SPST to the Output
- ESD Protection > ±4000 V

BENEFITS

- Devices Can Be Chained for System Expansion
- **Reduced Control Wires**
- Reduced Board Space ٠
- Low Signal Distortion ٠
- **Reduced Switch Errors** •
- **Reduced Power Supply**
- Simple Interfacing •
- Improved Reliability

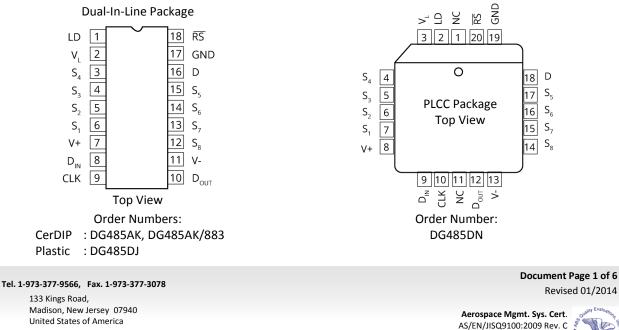
APPLICATIONS

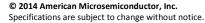
- Audio Switching and Routing
- Audio Teleconferencing
- Serial Data Acquisition and Process Control
- Battery and Remote Systems
- Automotive, Avionics and **ATE Systems**
- Summing Node Amplifiers

DESCRIPTION

The DG486 is an analog switch array that may be used as a low power 8-channel multiplexer for use in serial control applications. Any, all or none of the 8 switches may be closed at any given time. Combining low ON-resistance (t_{DS(ON)} <85 Ω) and fast switching (t_{ON} <200 ns), the DG485 is ideally suited for data acquisition, process control, communication, and avionic applications.

The control data is input serially into the shift register with each clock pulse. The shift register contents can be latched-in via LD at any point into an octal latch which in turn controls all switches. \overline{RS} resets the shift register, forcing all latch inputs to a LOW condition. The serial input


(D_{IN}) and serial output (D_{OUT}) allow chaining of arrays for large systems.


Built on the high voltage silicon gate process the DG485 has a wide 44 V range. An epitaxial layer prevents latchup.

Each channel conducts equally well in either direction when ON and blocks up to 30 volts peak-to-peak when OFF.

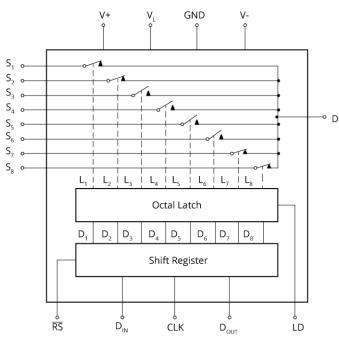
Packaging for the DG485 consists of the 18-pin CerDIP, plastic DIP and 20-pin PLCC for surface mount. Temperature ranges available are military, A suffix (-55 to 125°C) and industrial, D suffix (-40 to 85° C).

PIN CONFIGURATIONS

www.americanmicrosemi.com

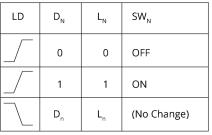
Revised 01/2014

1509001.2008


Cert No. 45325

Octal Analog Switch Array

Low-Power CMOS


06485

FUNCTIONAL BLOCK DIAGRAM AND TRUTH TABLES

RS	CLK	D _{IN}	D ₁	D _N
1		0	0	D _{N-1}
1		1	1	D _{N-1}
1		Х	D ₁	D _N (No Change)
0	Х	х	0	0

The CLK Input is edge triggered

The LD Input is level triggered

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V-

V+	44 V
GND	25 V
Digital Inputs ¹ V _s , V _D	(V-) -2 V to (V+) +2 V
	Or 30 mA, whichever occurs first
Continuous Current (Any	Terminal) 30 mA
Current, S or D (Pulsed 1	ms, 10% duty cycle) 100 mA
Storage Temperature	(A Suffix)65 to 150°C
	(D Suffix)65 to 125°C
Operating Temperature	(A Suffix)55 to 125°C
	(D Suffix)40 to 85°C

Power Dissipation (Package)*

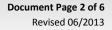
18-Pin CerDIP**	600 mW
18-Pin Plastic DIP***	
20-Pin PLCC****	450mW

* All leads welded or soldered to PC Board

** Derate 9.2 mW/°C above 75°C

*** Derate 16.5 mW/°C above 25°C

**** Derate 6mW/°C above 75°C


¹ Signals on Sx, Dx, or INx exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

SPECIFICATIONS									
		TEST CONDITIONS Unless Otherwise Specified			A SUFFIX -55 to 125°C		D SUFFIX -40 to 85°C		
PARAMETER	SYMBOL	V+ = 15 V, V- = -15 V V _L = 5 V, V _{IN} = 2,4 V, 0.8 V ^e	TEMP ^f	TYP ^d	MIN ^b	MAX ^b	MIN ^b	MAX ^b	UNIT
ANALOG SWITCH									
Analog Signal Range ^c	VANALOG		Full		-15	15	-15	15	V
Drain-Source ON-Resistance	r ds(on)	V+ = 13.5 V, V- = -13.5 V Is = -5 mA, Vp = ±10 V	Room Full	55		85 125		85 125	Ω
Delta Drain- Source ON-Resistance	Δ r ds(on)	For each VD : $\Delta r_{DS(ON)} = \frac{\Gamma DS(ON) MAX - \Gamma DS(ON)MIN}{\Gamma DS(ON)AVG}$	Room	6		10		10	%

Tel. 1-973-377-9566, Fax. 1-973-377-3078

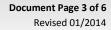
133 Kings Road, Madison, New Jersey 07940 United States of America

© 2013 American Microsemiconductor, Inc. Specifications are subject to change without notice.

Aerospace Mgmt. Sys. Cert. AS/EN/JISQ9100:2009 Rev. C ISO9001:2008 Cert No. 45325

American Microsemiconductor

Advancing the Semiconductor Industry Since 1972


Octal Analog Switch Array

DG485 Low-Power CMOS

SPESIFICATI	ONS								
		TEST CONDITIONS Unless Otherwise Specified			A SUFFIX -55 to 125°C		D SUFFIX -40 to 85°C		
PARAMETER	SYMBOL	V+ = 15 V, V- = -15 V V _L = 5 V, V _{IN} = 2,4 V, 0.8 V ^e	TEMP ^f	TYP ^d	MIN ^b	MAX ^b	MIN ^b	MAX ^b	UNIT
ANALOG SWITC	CH (Cont'd)								
Switch OFF	Is(OFF)	V+ = 16.5 V, V- = -16.5 V	Room Hot	0.01	-1 -20	1 20	-1 -20	1 20	
Leakage Current	ID(OFF)	V _D = -15.6 V, Vs = 15.5 V V _D = 15.5 V, Vs = -15.5 V	Room Hot	0.1	-10 -200	10 200	-10 -200	10 200	
Channel ON Leakage	ID(ON) +	$V \pm = \pm 16.5 V$ $V_S = V_D = \pm 15.5 V$ One Switch At A Time	Room Hot	0.11	-20 -500	20 500	-20 -500	20 500	nA
Current	Is(on)	$V \pm = \pm 16.5 V$ $V_S = V_D = \pm 15.5 V$ All Switches ON	Room	0.20					
INPUT									
Input Current with VIN Low	١ı	VIN Under Test = 0.8 V All Other = 2.4 V	Room Hot	-0.00001	-1 -5	1 5	-1 -5	1 5	
Input Current with VIN High	Ін	VIN Under Test = 2.4 V All Other = 0.8 V	Room Hot	0.00001	-1 -5	1 5	-1 -5	1 5	μΑ
SERIAL DATA O	UTPUT								
Output Voltage with VIN Low – Dout	Vol	lo = 1.6 mA, V+ = 4.5 V	Full	0.25		0.4		0.4	
Output Voltage with Vıℕ High - Dou⊤	Vон	lo = -80 μA, V+ = 16.5 V VL = 4.75 V	Full	4.4	2.7		2.7		V
DYNAMIC CHAP	RACTERISTIC	S							
Turn-ON Time	ton	See Figure 1 Vs = ±10 V	Room Hot	170		200 275		200 275	
Turn-OFF Time	toff	See Figure 1 Vs = ±10 V	Room Hot	150		200 275		200 276	
Data Setup Time	tos	See Figure 1	Room Hot		40 60		40 60		-
Data Hold Time	tdн	See rigure i	Room Hot		40 60		40 60		ns
LOAD Hold Time	t∟н		Room Hot		100 150		100 150		
RESET Hold Time	trм	See Figure 1	Room Hot		100 150		100 150		
RESET ↑ to CLOCK ↑ Delay	t dro		Room Hot		40 60		40 60		
Charge Injection	Q	Any One Channel Vs = 0 V, C∟ = 1.000 pF	Room	17			-		pC
OFF Isolation ^c		RL = 50 Ω, CL = 5 pF f = 1 MHz, See Figure 2	Room	-75					dB

Tel. 1-973-377-9566, Fax. 1-973-377-3078 133 Kings Road, Madison, New Jersey 07940 United States of America

© 2014 American Microsemiconductor, Inc. Specifications are subject to change without notice.

Aerospace Mgmt. Sys. Cert. AS/EN/JISQ9100:2009 Rev. C ISO9001:2008 Cert No. 45325

Octal Analog Switch Array

SPESIFICATIONS									
		TEST CONDITIONS Unless Otherwise Specified			A SUFFIX -55 to 125°C		D SUFFIX -40 to 85°C		
PARAMETER	SYMBOL	V+ = 15 V, V- = -15 V V _L = 5 V, V _{IN} = 2,4 V, 0.8 V ^e	TEMP ^f	TYP ^d	MIN ^b	MAX ^b	MIN ^b	MAX ^b	UNIT
DYNAMIC CHAR	ACTERISTIC	S							
Source OFF Capacitance ^c	Cs(OFF)	Vgen = 0 V, Rgen = 0 Ω f = 1 MHz	Room	7					pF
Drain OFF Capacitance ^c	CD(OFF)		Room	43					
On-State	Cs+d (on)	Vgen = 0 V, Rgen = 0 Ω f = 1 MHz, One Channel ON	Room	53					
Capacitance ^c	CS+D (ON)	Vgen = 0 V, Rgen = 0 Ω f = 1 MHz, All Channels ON	Room	122					
POWER SUPPLI	ES								
Positive Supply Current	+	V+ = 16.5 V, V- = -16.5 V VIN = 0 or 5 V VL = 5.25 V DOUT Open	Room Full	0.001		3 10		3 10	
Negative Supply Current	-		Room Full	-0.001	-3 -10		-3 -10		
Logic Supply Current	lı.		Room Full	0.001		3 10		3 10	μΑ
Ground Current	Ignd		Room Full	-0.001	-3 -10		-3 -10		

NOTES :

a. Refer to PROCESS OPTION FLOWCHART for additional information.

b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

c. Guaranteed by design, not subject to production test.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. VIN = Input voltage to perform proper function.

f. Room = 25°C, Cold and Hot = as determined by the operating temperature suffix.

TEST CIRCUITS

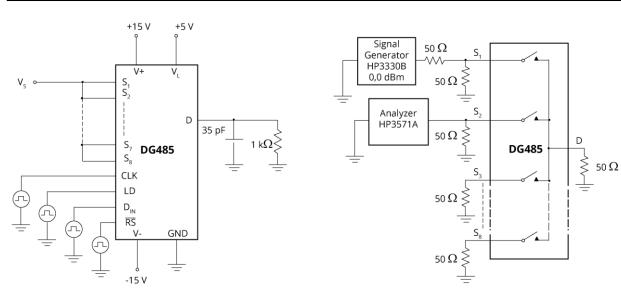


Figure 1. Switching Time Test Circuit

Tel. 1-973-377-9566, Fax. 1-973-377-3078

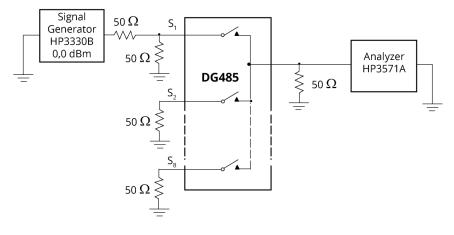
133 Kings Road, Madison, New Jersey 07940 United States of America

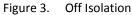
© 2013 American Microsemiconductor, Inc. Specifications are subject to change without notice.

Document Page 4 of 6 Revised 06/2013

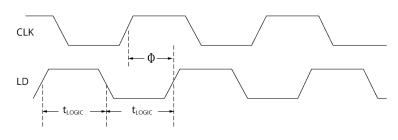
Aerospace Mgmt. Sys. Cert. AS/EN/JISQ9100:2009 Rev. C ISO9001:2008 Cert No. 45325

Figure 2. Adjacent Input Crosstalk




American Microsemiconductor

Advancing the Semiconductor Industry Since 1972


Low-Power CMOS Octal Analog Switch Array

DG485

APPLICATIONS

 Φ = for CLK and LD inputs of the same frequency. The recommended phase delay of LD from CLK is ½ Logic to Logic.

tLOGIC (MIN): 80 ns at 25°C V+ = 15 V 150 ns at 125°C V- = -15 V GND = 0 V

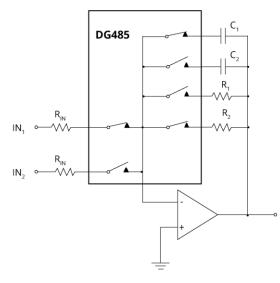


Figure 5. Multi-Function circuit Provides Input Selection, Gain Ranging and Filtering with One DG485

Tel. 1-973-377-9566, Fax. 1-973-377-3078 133 Kings Road, Madison, New Jersey 07940 United States of America

© 2014 American Microsemiconductor, Inc. Specifications are subject to change without notice.

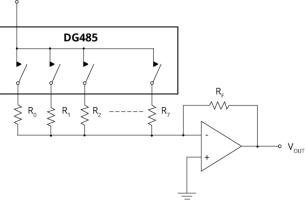
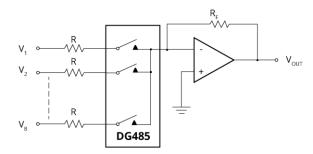
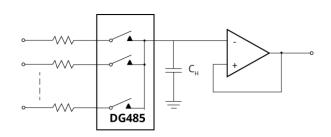


Figure 6. Non-Linear DAC Circuit

Document Page 5 of 6 Revised 01/2014


Aerospace Mgmt. Sys. Cert. AS/EN/JISQ9100:2009 Rev. C ISO9001:2008 Cert No. 45325


DG485 Low-Power CMOS **Octal Analog Switch Array**

MERICAN MICROSEMICONDUCTOR Advancing the Semiconductor Industry Since 1972

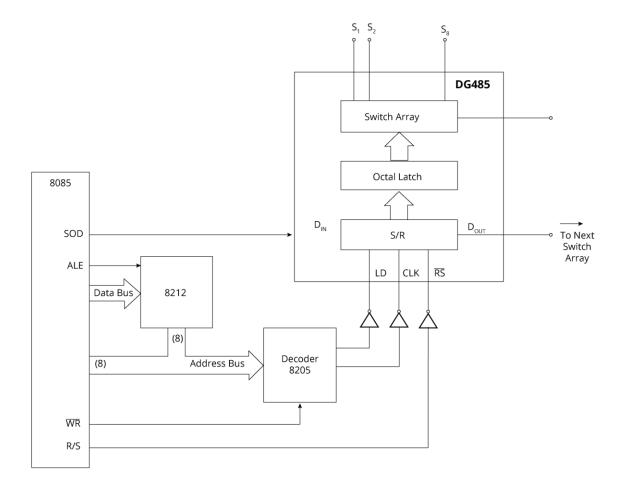

APPLICATIONS (Cont'd)

Figure 7. Summing Node Mixer

Multi-Channel Sampling and TDM application Figure 8.

Tel. 1-973-377-9566, Fax. 1-973-377-3078 133 Kings Road, Madison, New Jersey 07940 United States of America

© 2013 American Microsemiconductor, Inc. Specifications are subject to change without notice. Document Page 6 of 6 Revised 06/2013

Aerospace Mgmt. Sys. Cert. AS/EN/JISQ9100:2009 Rev. C ISO9001:2008 Cert No. 45325

