FEATURES

- ± 15 Volt Input Range
- ON-Resistance < 85Ω
- Serial Data Input/Output
- Low-Power ($\mathrm{P}_{\mathrm{D}}<105 \mu \mathrm{~W}$)
- TTL and CMOS Compatible
- Any Combination of 8 SPST to the Output
- ESD Protection > $\pm 4000 \mathrm{~V}$

BENEFITS

- Devices Can Be Chained for System Expansion
- Reduced Control Wires
- Reduced Board Space
- Low Signal Distortion
- Reduced Switch Errors
- Reduced Power Supply
- Simple Interfacing
- Improved Reliability

APPLICATIONS

- Audio Switching and Routing
- Audio Teleconferencing
- Serial Data Acquisition and Process Control
- Battery and Remote Systems
- Automotive, Avionics and ATE Systems
- Summing Node Amplifiers

DESCRIPTION

The DG486 is an analog switch array that may be used as a low power 8-channel multiplexer for use in serial control applications. Any, all or none of the 8 switches may be closed at any given time. Combining low ON-resistance ($\mathrm{t}_{\mathrm{DS}(\mathrm{ON})}$ $<85 \Omega$) and fast switching ($t_{o N}<200 \mathrm{~ns}$), the DG485 is ideally suited for data acquisition, process control, communication, and avionic applications.
The control data is input serially into the shift register with each clock pulse. The shift register contents can be latched-in via LD at any point into an octal latch which in turn controls all switches. $\overline{R S}$ resets the shift register, forcing all latch inputs to a LOW condition. The serial input
($D_{\text {IN }}$) and serial output ($\mathrm{D}_{\text {Out }}$) allow chaining of arrays for large systems.

Built on the high voltage silicon gate process the DG485 has a wide 44 V range. An epitaxial layer prevents latchup.

Each channel conducts equally well in either direction when ON and blocks up to 30 volts peak-to-peak when OFF.

Packaging for the DG485 consists of the 18-pin CerDIP, plastic DIP and 20-pin PLCC for surface mount. Temperature ranges available are military, A suffix (-55 to $125^{\circ} \mathrm{C}$) and industrial, D suffix (-40 to $85^{\circ} \mathrm{C}$).

PIN CONFIGURATIONS

$\overline{\mathrm{RS}}$	CLK	$\mathrm{D}_{\text {IN }}$	D_{1}	D_{N}
1	-	0	0	$\mathrm{D}_{\mathrm{N}-1}$
1	-	1	1	D_{N-1}
1	-	x	D_{1}	D_{N} (No Change)
0	x	x	0	0

The CLK Input is edge triggered

$L D$	D_{N}	L_{N}	$S W_{N}$
Γ	0	0	OFF
Γ	1	1	ON
\square	D_{n}	L_{n}	(No Change)

The LD Input is level triggered

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V-		Power Dissipation (Package)*
 44 V	18-Pin CerDIP** ... 600 mW
GND 25 V	18-Pin Plastic DIP*** ... 470 mW
Digital Inputs ${ }^{1} \mathrm{~V}_{5}, \mathrm{~V}_{\mathrm{D}} \ldots . .$.	\qquad (V-) -2 V to (V+) +2 V Or 30 mA , whichever occurs first	20-Pin PLCC**** ... 450 mW
Continuous Current (Any	Terminal) 30 mA	* All leads welded or soldered to PC Board
Current, S or D (Pulsed 1 n	ms, 10\% duty cycle) 100 mA	*** Derate $16.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
Storage Temperature	(A Suffix) -65 to $150^{\circ} \mathrm{C}$ (D Suffix) -65 to $125^{\circ} \mathrm{C}$	**** Derate $6 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
Operating Temperature	(A Suffix) -55 to $125^{\circ} \mathrm{C}$ (D Suffix) -40 to $85^{\circ} \mathrm{C}$	1 Signals on Sx, Dx, or INx exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS Unless Otherwise Specified $\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2,4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{e}} \end{gathered}$			$\begin{gathered} \text { A SUFFIX } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { D SUFFIX } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		UNIT
			TEMP ${ }^{\text {f }}$	TYP ${ }^{\text {d }}$	MIN ${ }^{\text {b }}$	MAX ${ }^{\text {b }}$	MIN ${ }^{\text {b }}$	MAX ${ }^{\text {b }}$	

ANALOG SWITCH									
Analog Signal Range ${ }^{\text {c }}$	Vanalog		Full		-15	15	-15	15	V
Drain-Source ON-Resistance	rDs(On)	$\begin{aligned} \mathrm{V}+ & =13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \\ \mathrm{Is} & =-5 \mathrm{~mA}, \mathrm{VD}= \end{aligned}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	55		$\begin{gathered} \hline 85 \\ 125 \\ \hline \end{gathered}$		$\begin{gathered} \hline 85 \\ 125 \\ \hline \end{gathered}$	Ω
Delta Drain- Source ON-Resistance	$\Delta \mathrm{ros}(\mathrm{O})$	For each VD : $\Delta \mathrm{rDs}(\mathrm{ON})=$ $\frac{\operatorname{rds}(\mathrm{on})_{M A X}-\mathrm{rds}(\mathrm{on})_{\text {MIN }}}{\operatorname{rdS}(\mathrm{on})_{A V G}}$	Room	6		10		10	\%

Tel. 1-973-377-9566, Fax. 1-973-377-3078
133 Kings Road,
Madison, New Jersey 07940
United States of America

SPESIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2,4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{e}} \end{gathered}$			$\begin{gathered} \text { A SUFFIX } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D SUFFIX } \\ -40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		UNIT
			TEMP ${ }^{\text {f }}$	TYP ${ }^{\text {d }}$	MIN ${ }^{\text {b }}$	MAX ${ }^{\text {b }}$	MIN ${ }^{\text {b }}$	MAX ${ }^{\text {b }}$	

ANALOG SWITCH (Cont'd)

Switch OFF Leakage Current	Is(OFF)	$\begin{aligned} & V+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & V_{D}=-15.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=15.5 \mathrm{~V} \\ & V_{D}=15.5 \mathrm{~V}, \mathrm{~V}=-15.5 \mathrm{~V} \end{aligned}$	Room Hot	0.01	$\begin{gathered} -1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} -1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	nA
	ID(OFF)		Room Hot	0.1	$\begin{gathered} -10 \\ -200 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} -10 \\ -200 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 200 \\ \hline \end{gathered}$	
Channel ON Leakage Current	ID(ON) + IS(ON)	$\begin{gathered} V_{ \pm}= \pm 16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V} \end{gathered}$ One Switch At A Time	Room Hot	0.11	$\begin{gathered} -20 \\ -500 \end{gathered}$	$\begin{gathered} 20 \\ 500 \end{gathered}$	$\begin{gathered} -20 \\ -500 \end{gathered}$	$\begin{gathered} 20 \\ 500 \end{gathered}$	
		$\begin{gathered} \mathrm{V}_{\mathrm{I}}= \pm 16.5 \mathrm{~V} \\ \mathrm{~V}=\mathrm{V}= \pm 15.5 \mathrm{~V} \\ \text { All Switches } \mathrm{ON} \\ \hline \end{gathered}$	Room	0.20					

INPUT

Input Current with Vin Low	IIL	$\begin{gathered} \text { Vin Under Test }=0.8 \mathrm{~V} \\ \text { All Other }=2.4 \mathrm{~V} \end{gathered}$	Room Hot	-0.00001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	1 5	$\begin{array}{r} -1 \\ -5 \\ \hline \end{array}$	1 5	$\mu \mathrm{A}$
Input Current with Vin High	IIH	$\begin{gathered} \text { Vin Under Test }=2.4 \mathrm{~V} \\ \text { All Other }=0.8 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Room } \\ \text { Hot } \end{gathered}$	0.00001	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	1 5	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	1 5	

SERIAL DATA OUTPUT

Output Voltage with Vin Low Dout	Vol	$\mathrm{lo}=1.6 \mathrm{~mA}, \mathrm{~V}+=4.5 \mathrm{~V}$	Full	0.25		0.4		0.4	
Output Voltage with Vin High Dout	Vон	$\begin{gathered} \mathrm{I}=-80 \mu \mathrm{~A}, \mathrm{~V}+=16.5 \mathrm{~V} \\ \mathrm{~V}=4.75 \mathrm{~V} \end{gathered}$	Full	4.4	2.7		2.7		

DYNAMIC CHARACTERISTICS									
Turn-ON Time	ton	See Figure 1 $\mathrm{Vs}= \pm 10 \mathrm{~V}$	Room Hot	170		$\begin{aligned} & 200 \\ & 275 \end{aligned}$		$\begin{aligned} & 200 \\ & 275 \end{aligned}$	ns
Turn-OFF Time	toff	See Figure 1 $\text { Vs = } \pm 10 \mathrm{~V}$	Room Hot	150		$\begin{aligned} & 200 \\ & 275 \end{aligned}$		$\begin{aligned} & 200 \\ & 276 \end{aligned}$	
Data Setup Time	tbs	See Figure 1	Room Hot		$\begin{aligned} & \hline 40 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$		
Data Hold Time	ton		Room Hot		$\begin{aligned} & 40 \\ & 60 \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$		
LOAD Hold Time	tıн	See Figure 1	Room Hot		$\begin{aligned} & 100 \\ & 150 \end{aligned}$		$\begin{aligned} & 100 \\ & 150 \end{aligned}$		
RESET Hold Time	trm		Room Hot		$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$		
RESET \uparrow to CLOCK \uparrow Delay	tDro		Room Hot		$\begin{aligned} & 40 \\ & 60 \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$		
Charge Injection	Q	Any One Channel V s $=0 \mathrm{~V}, \mathrm{CL}=1.000 \mathrm{pF}$	Room	17					pC
OFF Isolation ${ }^{\text {c }}$		$\begin{gathered} \mathrm{RL}=50 \Omega, C L=5 \mathrm{pF} \\ \mathrm{f}=1 \mathrm{MHz} \text {, See Figure } 2 \end{gathered}$	Room	-75					dB

SPESIFICATIONS									
		TEST CONDITIONS Unless Otherwise Specified				$\begin{aligned} & \text { FIX } \\ & 25^{\circ} \mathrm{C} \end{aligned}$			
PARAMETER	SYMBOL	$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2,4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{e}} \end{gathered}$	TEMP ${ }^{\text {f }}$	TYP ${ }^{\text {d }}$	MIN ${ }^{\text {b }}$	MAX ${ }^{\text {b }}$	MIN ${ }^{\text {b }}$	MAX ${ }^{\text {b }}$	UNIT

POWER SUPPLIES									
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{VIN}=0 \text { or } 5 \mathrm{~V} \\ \mathrm{~V} \text { L }=5.25 \mathrm{~V} \\ \text { Dout Open } \end{gathered}$	Room Full	0.001		$\begin{gathered} 3 \\ 10 \end{gathered}$		3 10	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	-0.001	$\begin{gathered} -3 \\ -10 \end{gathered}$		$\begin{gathered} -3 \\ -10 \end{gathered}$		
Logic Supply Current	IL		Room Full	0.001		$\begin{gathered} \hline 3 \\ 10 \end{gathered}$		$\begin{gathered} \hline 3 \\ 10 \end{gathered}$	
Ground Current	IGND		Room Full	-0.001	$\begin{gathered} -3 \\ -10 \end{gathered}$		$\begin{gathered} -3 \\ -10 \end{gathered}$		

NOTES :
a. Refer to PROCESS OPTION FLOWCHART for additional information.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Guaranteed by design, not subject to production test.
d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
e. $\mathrm{VIN}=$ Input voltage to perform proper function.
f. Room $=25^{\circ} \mathrm{C}$, Cold and Hot $=$ as determined by the operating temperature suffix.

TEST CIRCUITS

Figure 1. Switching Time Test Circuit

Figure 3. Off Isolation

APPLICATIONS

Figure 4.

Figure 5. Multi-Function circuit Provides Input Selection, Gain Ranging and Filtering with One DG485

Figure 6. Non-Linear DAC Circuit

APPLICATIONS (Cont'd)

Figure 7. Summing Node Mixer

Figure 8. Multi-Channel Sampling and TDM application

Figure 9. Direct Serial Interface (8085)

